|
// ==++==
//
// Copyright (c) Microsoft Corporation. All rights reserved.
//
// ==--==
/*============================================================
**
** Class: Single
**
**
** Purpose: A wrapper class for the primitive type float.
**
**
===========================================================*/
namespace System {
using System.Globalization;
using System;
///#if GENERICS_WORK
/// using System.Numerics;
///#endif
using System.Runtime.InteropServices;
using System.Runtime.CompilerServices;
using System.Runtime.ConstrainedExecution;
using System.Diagnostics.Contracts;
[Serializable]
[System.Runtime.InteropServices.StructLayout(LayoutKind.Sequential)]
[System.Runtime.InteropServices.ComVisible(true)]
#if GENERICS_WORK
public struct Single : IComparable, IFormattable, IConvertible
, IComparable<Single>, IEquatable<Single>
/// , IArithmetic<Single>
#else
public struct Single : IComparable, IFormattable, IConvertible
#endif
{
internal float m_value;
//
// Public constants
//
public const float MinValue = (float)-3.40282346638528859e+38;
public const float Epsilon = (float)1.4e-45;
public const float MaxValue = (float)3.40282346638528859e+38;
public const float PositiveInfinity = (float)1.0 / (float)0.0;
public const float NegativeInfinity = (float)-1.0 / (float)0.0;
public const float NaN = (float)0.0 / (float)0.0;
[Pure]
[System.Security.SecuritySafeCritical] // auto-generated
[System.Runtime.Versioning.NonVersionable]
public unsafe static bool IsInfinity(float f) {
return (*(int*)(&f) & 0x7FFFFFFF) == 0x7F800000;
}
[Pure]
[System.Security.SecuritySafeCritical] // auto-generated
[System.Runtime.Versioning.NonVersionable]
public unsafe static bool IsPositiveInfinity(float f) {
return *(int*)(&f) == 0x7F800000;
}
[Pure]
[System.Security.SecuritySafeCritical] // auto-generated
[System.Runtime.Versioning.NonVersionable]
public unsafe static bool IsNegativeInfinity(float f) {
return *(int*)(&f) == unchecked((int)0xFF800000);
}
[Pure]
[ReliabilityContract(Consistency.WillNotCorruptState, Cer.Success)]
[System.Security.SecuritySafeCritical]
[System.Runtime.Versioning.NonVersionable]
public unsafe static bool IsNaN(float f) {
return (*(int*)(&f) & 0x7FFFFFFF) > 0x7F800000;
}
// Compares this object to another object, returning an integer that
// indicates the relationship.
// Returns a value less than zero if this object
// null is considered to be less than any instance.
// If object is not of type Single, this method throws an ArgumentException.
//
public int CompareTo(Object value) {
if (value == null) {
return 1;
}
if (value is Single) {
float f = (float)value;
if (m_value < f) return -1;
if (m_value > f) return 1;
if (m_value == f) return 0;
// At least one of the values is NaN.
if (IsNaN(m_value))
return (IsNaN(f) ? 0 : -1);
else // f is NaN.
return 1;
}
throw new ArgumentException (Environment.GetResourceString("Arg_MustBeSingle"));
}
public int CompareTo(Single value) {
if (m_value < value) return -1;
if (m_value > value) return 1;
if (m_value == value) return 0;
// At least one of the values is NaN.
if (IsNaN(m_value))
return (IsNaN(value) ? 0 : -1);
else // f is NaN.
return 1;
}
[System.Runtime.Versioning.NonVersionable]
public static bool operator ==(Single left, Single right) {
return left == right;
}
[System.Runtime.Versioning.NonVersionable]
public static bool operator !=(Single left, Single right) {
return left != right;
}
[System.Runtime.Versioning.NonVersionable]
public static bool operator <(Single left, Single right) {
return left < right;
}
[System.Runtime.Versioning.NonVersionable]
public static bool operator >(Single left, Single right) {
return left > right;
}
[System.Runtime.Versioning.NonVersionable]
public static bool operator <=(Single left, Single right) {
return left <= right;
}
[System.Runtime.Versioning.NonVersionable]
public static bool operator >=(Single left, Single right) {
return left >= right;
}
public override bool Equals(Object obj) {
if (!(obj is Single)) {
return false;
}
float temp = ((Single)obj).m_value;
if (temp == m_value) {
return true;
}
return IsNaN(temp) && IsNaN(m_value);
}
public bool Equals(Single obj)
{
if (obj == m_value) {
return true;
}
return IsNaN(obj) && IsNaN(m_value);
}
[System.Security.SecuritySafeCritical] // auto-generated
public unsafe override int GetHashCode() {
float f = m_value;
if (f == 0) {
// Ensure that 0 and -0 have the same hash code
return 0;
}
int v = *(int*)(&f);
return v;
}
[System.Security.SecuritySafeCritical] // auto-generated
public override String ToString() {
Contract.Ensures(Contract.Result<String>() != null);
return Number.FormatSingle(m_value, null, NumberFormatInfo.CurrentInfo);
}
[System.Security.SecuritySafeCritical] // auto-generated
public String ToString(IFormatProvider provider) {
Contract.Ensures(Contract.Result<String>() != null);
return Number.FormatSingle(m_value, null, NumberFormatInfo.GetInstance(provider));
}
[System.Security.SecuritySafeCritical] // auto-generated
public String ToString(String format) {
Contract.Ensures(Contract.Result<String>() != null);
return Number.FormatSingle(m_value, format, NumberFormatInfo.CurrentInfo);
}
[System.Security.SecuritySafeCritical] // auto-generated
public String ToString(String format, IFormatProvider provider) {
Contract.Ensures(Contract.Result<String>() != null);
return Number.FormatSingle(m_value, format, NumberFormatInfo.GetInstance(provider));
}
// Parses a float from a String in the given style. If
// a NumberFormatInfo isn't specified, the current culture's
// NumberFormatInfo is assumed.
//
// This method will not throw an OverflowException, but will return
// PositiveInfinity or NegativeInfinity for a number that is too
// large or too small.
//
public static float Parse(String s) {
return Parse(s, NumberStyles.Float | NumberStyles.AllowThousands, NumberFormatInfo.CurrentInfo);
}
public static float Parse(String s, NumberStyles style) {
NumberFormatInfo.ValidateParseStyleFloatingPoint(style);
return Parse(s, style, NumberFormatInfo.CurrentInfo);
}
public static float Parse(String s, IFormatProvider provider) {
return Parse(s, NumberStyles.Float | NumberStyles.AllowThousands, NumberFormatInfo.GetInstance(provider));
}
public static float Parse(String s, NumberStyles style, IFormatProvider provider) {
NumberFormatInfo.ValidateParseStyleFloatingPoint(style);
return Parse(s, style, NumberFormatInfo.GetInstance(provider));
}
private static float Parse(String s, NumberStyles style, NumberFormatInfo info) {
return Number.ParseSingle(s, style, info);
}
public static Boolean TryParse(String s, out Single result) {
return TryParse(s, NumberStyles.Float | NumberStyles.AllowThousands, NumberFormatInfo.CurrentInfo, out result);
}
public static Boolean TryParse(String s, NumberStyles style, IFormatProvider provider, out Single result) {
NumberFormatInfo.ValidateParseStyleFloatingPoint(style);
return TryParse(s, style, NumberFormatInfo.GetInstance(provider), out result);
}
private static Boolean TryParse(String s, NumberStyles style, NumberFormatInfo info, out Single result) {
if (s == null) {
result = 0;
return false;
}
bool success = Number.TryParseSingle(s, style, info, out result);
if (!success) {
String sTrim = s.Trim();
if (sTrim.Equals(info.PositiveInfinitySymbol)) {
result = PositiveInfinity;
} else if (sTrim.Equals(info.NegativeInfinitySymbol)) {
result = NegativeInfinity;
} else if (sTrim.Equals(info.NaNSymbol)) {
result = NaN;
} else
return false; // We really failed
}
return true;
}
//
// IConvertible implementation
//
public TypeCode GetTypeCode() {
return TypeCode.Single;
}
/// <internalonly/>
bool IConvertible.ToBoolean(IFormatProvider provider) {
return Convert.ToBoolean(m_value);
}
/// <internalonly/>
char IConvertible.ToChar(IFormatProvider provider) {
throw new InvalidCastException(Environment.GetResourceString("InvalidCast_FromTo", "Single", "Char"));
}
/// <internalonly/>
sbyte IConvertible.ToSByte(IFormatProvider provider) {
return Convert.ToSByte(m_value);
}
/// <internalonly/>
byte IConvertible.ToByte(IFormatProvider provider) {
return Convert.ToByte(m_value);
}
/// <internalonly/>
short IConvertible.ToInt16(IFormatProvider provider) {
return Convert.ToInt16(m_value);
}
/// <internalonly/>
ushort IConvertible.ToUInt16(IFormatProvider provider) {
return Convert.ToUInt16(m_value);
}
/// <internalonly/>
int IConvertible.ToInt32(IFormatProvider provider) {
return Convert.ToInt32(m_value);
}
/// <internalonly/>
uint IConvertible.ToUInt32(IFormatProvider provider) {
return Convert.ToUInt32(m_value);
}
/// <internalonly/>
long IConvertible.ToInt64(IFormatProvider provider) {
return Convert.ToInt64(m_value);
}
/// <internalonly/>
ulong IConvertible.ToUInt64(IFormatProvider provider) {
return Convert.ToUInt64(m_value);
}
/// <internalonly/>
float IConvertible.ToSingle(IFormatProvider provider) {
return m_value;
}
/// <internalonly/>
double IConvertible.ToDouble(IFormatProvider provider) {
return Convert.ToDouble(m_value);
}
/// <internalonly/>
Decimal IConvertible.ToDecimal(IFormatProvider provider) {
return Convert.ToDecimal(m_value);
}
/// <internalonly/>
DateTime IConvertible.ToDateTime(IFormatProvider provider) {
throw new InvalidCastException(Environment.GetResourceString("InvalidCast_FromTo", "Single", "DateTime"));
}
/// <internalonly/>
Object IConvertible.ToType(Type type, IFormatProvider provider) {
return Convert.DefaultToType((IConvertible)this, type, provider);
}
///#if GENERICS_WORK
/// //
/// // IArithmetic<Single> implementation
/// //
///
/// /// <internalonly/>
/// Single IArithmetic<Single>.AbsoluteValue(out bool overflowed) {
/// Single abs = (m_value < 0 ? -m_value : m_value);
/// overflowed = IsInfinity(abs) || IsNaN(abs);
/// return abs;
/// }
///
/// /// <internalonly/>
/// Single IArithmetic<Single>.Negate(out bool overflowed) {
/// Single neg= -m_value;
/// overflowed = IsInfinity(neg) || IsNaN(neg);
/// return neg;
/// }
///
/// /// <internalonly/>
/// Single IArithmetic<Single>.Sign(out bool overflowed) {
/// overflowed = IsNaN(m_value);
/// if (overflowed) {
/// return m_value;
/// }
/// return (m_value >= 0 ? (m_value == 0 ? 0 : 1) : -1);
/// }
///
/// /// <internalonly/>
/// Single IArithmetic<Single>.Add(Single addend, out bool overflowed) {
/// Single s = m_value + addend;
/// overflowed = IsInfinity(s) || IsNaN(s);
/// return s;
/// }
///
/// /// <internalonly/>
/// Single IArithmetic<Single>.Subtract(Single subtrahend, out bool overflowed) {
/// Single s = m_value - subtrahend;
/// overflowed = IsInfinity(s) || IsNaN(s);
/// return s;
/// }
///
/// /// <internalonly/>
/// Single IArithmetic<Single>.Multiply(Single multiplier, out bool overflowed) {
/// Single s = m_value * multiplier;
/// overflowed = IsInfinity(s) || IsNaN(s);
/// return s;
/// }
///
///
/// /// <internalonly/>
/// Single IArithmetic<Single>.Divide(Single divisor, out bool overflowed) {
/// Single s = m_value / divisor;
/// overflowed = IsInfinity(s) || IsNaN(s);
/// return s;
/// }
///
/// /// <internalonly/>
/// Single IArithmetic<Single>.DivideRemainder(Single divisor, out Single remainder, out bool overflowed) {
/// remainder = m_value % divisor;
/// Single s = m_value / divisor;
/// overflowed = IsInfinity(s) || IsInfinity(remainder) || IsNaN(s) || IsNaN(remainder);
/// return s;
/// }
///
/// /// <internalonly/>
/// Single IArithmetic<Single>.Remainder(Single divisor, out bool overflowed) {
/// Single s = m_value % divisor;
/// overflowed = IsInfinity(s) || IsNaN(s);
/// return s;
/// }
///
/// /// <internalonly/>
/// ArithmeticDescriptor<Single> IArithmetic<Single>.GetDescriptor() {
/// if (s_descriptor == null) {
/// s_descriptor = new SingleArithmeticDescriptor( ArithmeticCapabilities.One
/// | ArithmeticCapabilities.Zero
/// | ArithmeticCapabilities.MaxValue
/// | ArithmeticCapabilities.MinValue
/// | ArithmeticCapabilities.PositiveInfinity
/// | ArithmeticCapabilities.NegativeInfinity);
/// }
/// return s_descriptor;
/// }
///
/// private static SingleArithmeticDescriptor s_descriptor;
///
/// class SingleArithmeticDescriptor : ArithmeticDescriptor<Single> {
/// public SingleArithmeticDescriptor(ArithmeticCapabilities capabilities) : base(capabilities) {}
/// public override Single One {
/// get {
/// return (Single) 1;
/// }
/// }
///
/// public override Single Zero {
/// get {
/// return (Single) 0;
/// }
/// }
///
/// public override Single MinValue {
/// get {
/// return Single.MinValue;
/// }
/// }
///
/// public override Single MaxValue {
/// get {
/// return Single.MaxValue;
/// }
/// }
///
/// public override Single PositiveInfinity {
/// get {
/// return Single.PositiveInfinity;
/// }
/// }
///
/// public override Single NegativeInfinity {
/// get {
/// return Single.NegativeInfinity;
/// }
/// }
///
/// }
///#endif // #if GENERICS_WORK
}
}
|