File: system\int16.cs
Project: ndp\clr\src\bcl\mscorlib.csproj (mscorlib)
// ==++==
// 
//   Copyright (c) Microsoft Corporation.  All rights reserved.
// 
// ==--==
/*============================================================
**
** Class:  Int16.cs
**
**
** Purpose: This class will encapsulate a short and provide an
**          Object representation of it.
**
** 
===========================================================*/
 
namespace System {
    
    using System;
    using System.Globalization;
///#if GENERICS_WORK
///    using System.Numerics;
///#endif
    using System.Runtime.InteropServices;
    using System.Diagnostics.Contracts;
 
[System.Runtime.InteropServices.ComVisible(true)]
[Serializable]
[System.Runtime.InteropServices.StructLayout(LayoutKind.Sequential)]
#if GENERICS_WORK
    public struct Int16 : IComparable, IFormattable, IConvertible
        , IComparable<Int16>, IEquatable<Int16>
///     , IArithmetic<Int16>
#else
    public struct Int16 : IComparable, IFormattable, IConvertible
#endif
    {
        internal short m_value;
    
        public const short MaxValue = (short)0x7FFF;
        public const short MinValue = unchecked((short)0x8000);
        
        // Compares this object to another object, returning an integer that
        // indicates the relationship. 
        // Returns a value less than zero if this  object
        // null is considered to be less than any instance.
        // If object is not of type Int16, this method throws an ArgumentException.
        // 
        public int CompareTo(Object value) {
            if (value == null) {
                return 1;
            }
    
            if (value is Int16) {
                return m_value - ((Int16)value).m_value;
            }
    
            throw new ArgumentException(Environment.GetResourceString("Arg_MustBeInt16"));
        }
 
        public int CompareTo(Int16 value) {
            return m_value - value;
        }
    
        public override bool Equals(Object obj) {
            if (!(obj is Int16)) {
                return false;
            }
            return m_value == ((Int16)obj).m_value;
        }
 
        [System.Runtime.Versioning.NonVersionable]
        public bool Equals(Int16 obj)
        {
            return m_value == obj;
        }
 
        // Returns a HashCode for the Int16
        public override int GetHashCode() {
            return ((int)((ushort)m_value) | (((int)m_value) << 16));
        }
    
 
        [System.Security.SecuritySafeCritical]  // auto-generated
        public override String ToString() {
            Contract.Ensures(Contract.Result<String>() != null);
            return Number.FormatInt32(m_value, null, NumberFormatInfo.CurrentInfo);
        }
        
        [System.Security.SecuritySafeCritical]  // auto-generated
        public String ToString(IFormatProvider provider) {
            Contract.Ensures(Contract.Result<String>() != null);
            return Number.FormatInt32(m_value, null, NumberFormatInfo.GetInstance(provider));
        }        
 
        public String ToString(String format) {
            Contract.Ensures(Contract.Result<String>() != null);
            return ToString(format, NumberFormatInfo.CurrentInfo);
        }        
    
        public String ToString(String format, IFormatProvider provider) {
            Contract.Ensures(Contract.Result<String>() != null);
            return ToString(format, NumberFormatInfo.GetInstance(provider));
        }
 
        [System.Security.SecuritySafeCritical]  // auto-generated
        private String ToString(String format, NumberFormatInfo info) {
            Contract.Ensures(Contract.Result<String>() != null);
 
            if (m_value<0 && format!=null && format.Length>0 && (format[0]=='X' || format[0]=='x')) {
                uint temp = (uint)(m_value & 0x0000FFFF);
                return Number.FormatUInt32(temp,format, info);
            }
            return Number.FormatInt32(m_value, format, info);
        }
    
        public static short Parse(String s) {
            return Parse(s, NumberStyles.Integer, NumberFormatInfo.CurrentInfo);
        }
    
        public static short Parse(String s, NumberStyles style) {
            NumberFormatInfo.ValidateParseStyleInteger(style);
            return Parse(s, style, NumberFormatInfo.CurrentInfo);
        }
 
        public static short Parse(String s, IFormatProvider provider) {
            return Parse(s, NumberStyles.Integer, NumberFormatInfo.GetInstance(provider));
        }
 
        public static short Parse(String s, NumberStyles style, IFormatProvider provider) {
            NumberFormatInfo.ValidateParseStyleInteger(style);
            return Parse(s, style, NumberFormatInfo.GetInstance(provider));
        }
        
        private static short Parse(String s, NumberStyles style, NumberFormatInfo info) {        
 
            int i = 0;
            try {
                i = Number.ParseInt32(s, style, info);
            }
            catch(OverflowException e) {
                throw new OverflowException(Environment.GetResourceString("Overflow_Int16"), e);
            }
 
            // We need this check here since we don't allow signs to specified in hex numbers. So we fixup the result
            // for negative numbers
            if ((style & NumberStyles.AllowHexSpecifier) != 0) { // We are parsing a hexadecimal number
                if ((i < 0) || (i > UInt16.MaxValue)) {
                    throw new OverflowException(Environment.GetResourceString("Overflow_Int16"));
                }
                return (short)i;
            }
                
            if (i < MinValue || i > MaxValue) throw new OverflowException(Environment.GetResourceString("Overflow_Int16"));
            return (short)i;
        }
 
        public static bool TryParse(String s, out Int16 result) {
            return TryParse(s, NumberStyles.Integer, NumberFormatInfo.CurrentInfo, out result);
        }
 
        public static bool TryParse(String s, NumberStyles style, IFormatProvider provider, out Int16 result) {
            NumberFormatInfo.ValidateParseStyleInteger(style);
            return TryParse(s, style, NumberFormatInfo.GetInstance(provider), out result);
        }
        
        private static bool TryParse(String s, NumberStyles style, NumberFormatInfo info, out Int16 result) {
 
            result = 0;
            int i;
            if (!Number.TryParseInt32(s, style, info, out i)) {
                return false;
            }
 
            // We need this check here since we don't allow signs to specified in hex numbers. So we fixup the result
            // for negative numbers
            if ((style & NumberStyles.AllowHexSpecifier) != 0) { // We are parsing a hexadecimal number
                if ((i < 0) || i > UInt16.MaxValue) {
                    return false;
                }
                result = (Int16) i;
                return true;
            }
                
            if (i < MinValue || i > MaxValue) {
                return false;
            }
            result = (Int16) i;
            return true;
        }
 
        //
        // IConvertible implementation
        // 
        
        public TypeCode GetTypeCode() {
            return TypeCode.Int16;
        }
 
 
        /// <internalonly/>
        bool IConvertible.ToBoolean(IFormatProvider provider) {
            return Convert.ToBoolean(m_value);
        }
 
        /// <internalonly/>
        char IConvertible.ToChar(IFormatProvider provider) {
            return Convert.ToChar(m_value);
        }
 
        /// <internalonly/>
        sbyte IConvertible.ToSByte(IFormatProvider provider) {
            return Convert.ToSByte(m_value);
        }
 
        /// <internalonly/>
        byte IConvertible.ToByte(IFormatProvider provider) {
            return Convert.ToByte(m_value);
        }
 
        /// <internalonly/>
        short IConvertible.ToInt16(IFormatProvider provider) {
            return m_value;
        }
 
        /// <internalonly/>
        ushort IConvertible.ToUInt16(IFormatProvider provider) {
            return Convert.ToUInt16(m_value);
        }
 
        /// <internalonly/>
        int IConvertible.ToInt32(IFormatProvider provider) {
            return Convert.ToInt32(m_value);
        }
 
        /// <internalonly/>
        uint IConvertible.ToUInt32(IFormatProvider provider) {
            return Convert.ToUInt32(m_value);
        }
 
        /// <internalonly/>
        long IConvertible.ToInt64(IFormatProvider provider) {
            return Convert.ToInt64(m_value);
        }
 
        /// <internalonly/>
        ulong IConvertible.ToUInt64(IFormatProvider provider) {
            return Convert.ToUInt64(m_value);
        }
 
        /// <internalonly/>
        float IConvertible.ToSingle(IFormatProvider provider) {
            return Convert.ToSingle(m_value);
        }
 
        /// <internalonly/>
        double IConvertible.ToDouble(IFormatProvider provider) {
            return Convert.ToDouble(m_value);
        }
 
        /// <internalonly/>
        Decimal IConvertible.ToDecimal(IFormatProvider provider) {
            return Convert.ToDecimal(m_value);
        }
 
        /// <internalonly/>
        DateTime IConvertible.ToDateTime(IFormatProvider provider) {
            throw new InvalidCastException(Environment.GetResourceString("InvalidCast_FromTo", "Int16", "DateTime"));
        }
 
        /// <internalonly/>
        Object IConvertible.ToType(Type type, IFormatProvider provider) {
            return Convert.DefaultToType((IConvertible)this, type, provider);
        }
 
///#if GENERICS_WORK
///        //
///        // IArithmetic<Int16> implementation
///        //
///
///        /// <internalonly/>
///        Int16 IArithmetic<Int16>.AbsoluteValue(out bool overflowed) {
///            overflowed = (m_value == MinValue);  // -m_value overflows
///            return (Int16) (m_value < 0 ? -m_value : m_value);
///        }
///
///        /// <internalonly/>
///        Int16 IArithmetic<Int16>.Negate(out bool overflowed) {
///            overflowed = (m_value == MinValue); // Negate(MinValue) overflows
///            return (Int16) (-m_value);
///        }
///
///        /// <internalonly/>
///        Int16 IArithmetic<Int16>.Sign(out bool overflowed) {
///            overflowed = false;
///            return (Int16) (m_value >= 0 ? (m_value == 0 ? 0 : 1) : -1);
///        }
///
///        /// <internalonly/>
///        Int16 IArithmetic<Int16>.Add(Int16 addend, out bool overflowed) {
///            int i = ((int)m_value) + addend;
///            overflowed = (i > MaxValue || i < MinValue);
///            return (Int16) i;
///        }
///
///        /// <internalonly/>
///        Int16 IArithmetic<Int16>.Subtract(Int16 subtrahend, out bool overflowed) {
///            int i = ((int)m_value)- subtrahend;
///            overflowed = (i > MaxValue || i < MinValue);
///            return (Int16) i;
///        }
///
///        /// <internalonly/>
///        Int16 IArithmetic<Int16>.Multiply(Int16 multiplier, out bool overflowed) {
///            long l = ((long)m_value) * multiplier;
///            overflowed = (l > MaxValue || l < MinValue);
///            return (Int16) l;
///        }
///
///
///        /// <internalonly/>
///        Int16 IArithmetic<Int16>.Divide(Int16 divisor, out bool overflowed) {
///            // signed integer division can overflow.  Consider the following
///            // 8-bit case: -128/-1 = 128.
///            // 128 won't fit into a signed 8-bit integer, instead you will end up
///            // with -128.
///            //
///            // Because of this corner case, we must check if the numerator
///            // is MinValue and if the denominator is -1.
///
///            overflowed = (divisor == -1 && m_value == MinValue);
///            return (Int16) unchecked(m_value / divisor);
///        }
///
///        /// <internalonly/>
///        Int16 IArithmetic<Int16>.DivideRemainder(Int16 divisor, out Int16 remainder, out bool overflowed) {
///            remainder = (Int16) (m_value % divisor);
///            overflowed = (divisor == -1 && m_value == MinValue);
///            return (Int16) unchecked(m_value / divisor);
///        }
///
///        /// <internalonly/>
///        Int16 IArithmetic<Int16>.Remainder(Int16 divisor, out bool overflowed) {
///            overflowed = false;
///            return (Int16) (m_value % divisor);
///        }
///
///        /// <internalonly/>
///        ArithmeticDescriptor<Int16> IArithmetic<Int16>.GetDescriptor() {
///            if (s_descriptor == null) {
///                s_descriptor = new Int16ArithmeticDescriptor( ArithmeticCapabilities.One
///                                                             | ArithmeticCapabilities.Zero
///                                                             | ArithmeticCapabilities.MaxValue
///                                                             | ArithmeticCapabilities.MinValue);
///            }
///            return s_descriptor;
///        }
///
///        private static Int16ArithmeticDescriptor s_descriptor;
/// 
///        class Int16ArithmeticDescriptor : ArithmeticDescriptor<Int16> {
///            public Int16ArithmeticDescriptor(ArithmeticCapabilities capabilities) : base(capabilities) {}
///
///            public override Int16 One {
///                get {
///                    return (Int16) 1;
///                }
///            }
///
///            public override Int16 Zero {
///                get {
///                    return (Int16) 0;
///                }
///            }
///
///            public override Int16 MinValue {
///                get {
///                    return Int16.MinValue;
///                }
///            }
///
///            public override Int16 MaxValue {
///                get {
///                    return Int16.MaxValue;
///                }
///            }
///        }
///#endif // #if GENERICS_WORK
 
 
    }
}