|
// ==++==
//
// Copyright (c) Microsoft Corporation. All rights reserved.
//
// ==--==
/*============================================================
**
** Class: Double
**
**
** Purpose: A representation of an IEEE double precision
** floating point number.
**
**
===========================================================*/
namespace System {
using System;
using System.Globalization;
///#if GENERICS_WORK
/// using System.Numerics;
///#endif
using System.Runtime.InteropServices;
using System.Runtime.CompilerServices;
using System.Runtime.ConstrainedExecution;
using System.Diagnostics.Contracts;
[Serializable]
[StructLayout(LayoutKind.Sequential)]
[System.Runtime.InteropServices.ComVisible(true)]
#if GENERICS_WORK
public struct Double : IComparable, IFormattable, IConvertible
, IComparable<Double>, IEquatable<Double>
/// , IArithmetic<Double>
#else
public struct Double : IComparable, IFormattable, IConvertible
#endif
{
internal double m_value;
//
// Public Constants
//
public const double MinValue = -1.7976931348623157E+308;
public const double MaxValue = 1.7976931348623157E+308;
// Note Epsilon should be a double whose hex representation is 0x1
// on little endian machines.
public const double Epsilon = 4.9406564584124654E-324;
public const double NegativeInfinity = (double)-1.0 / (double)(0.0);
public const double PositiveInfinity = (double)1.0 / (double)(0.0);
public const double NaN = (double)0.0 / (double)0.0;
internal static double NegativeZero = BitConverter.Int64BitsToDouble(unchecked((long)0x8000000000000000));
[Pure]
[System.Security.SecuritySafeCritical] // auto-generated
[System.Runtime.Versioning.NonVersionable]
public unsafe static bool IsInfinity(double d) {
return (*(long*)(&d) & 0x7FFFFFFFFFFFFFFF) == 0x7FF0000000000000;
}
[Pure]
[System.Runtime.Versioning.NonVersionable]
public static bool IsPositiveInfinity(double d) {
//Jit will generate inlineable code with this
if (d == double.PositiveInfinity)
{
return true;
}
else
{
return false;
}
}
[Pure]
[System.Runtime.Versioning.NonVersionable]
public static bool IsNegativeInfinity(double d) {
//Jit will generate inlineable code with this
if (d == double.NegativeInfinity)
{
return true;
}
else
{
return false;
}
}
[Pure]
[System.Security.SecuritySafeCritical] // auto-generated
internal unsafe static bool IsNegative(double d) {
return (*(UInt64*)(&d) & 0x8000000000000000) == 0x8000000000000000;
}
[Pure]
[ReliabilityContract(Consistency.WillNotCorruptState, Cer.Success)]
[System.Security.SecuritySafeCritical]
[System.Runtime.Versioning.NonVersionable]
public unsafe static bool IsNaN(double d)
{
return (*(UInt64*)(&d) & 0x7FFFFFFFFFFFFFFFL) > 0x7FF0000000000000L;
}
// Compares this object to another object, returning an instance of System.Relation.
// Null is considered less than any instance.
//
// If object is not of type Double, this method throws an ArgumentException.
//
// Returns a value less than zero if this object
//
public int CompareTo(Object value) {
if (value == null) {
return 1;
}
if (value is Double) {
double d = (double)value;
if (m_value < d) return -1;
if (m_value > d) return 1;
if (m_value == d) return 0;
// At least one of the values is NaN.
if (IsNaN(m_value))
return (IsNaN(d) ? 0 : -1);
else
return 1;
}
throw new ArgumentException(Environment.GetResourceString("Arg_MustBeDouble"));
}
public int CompareTo(Double value) {
if (m_value < value) return -1;
if (m_value > value) return 1;
if (m_value == value) return 0;
// At least one of the values is NaN.
if (IsNaN(m_value))
return (IsNaN(value) ? 0 : -1);
else
return 1;
}
// True if obj is another Double with the same value as the current instance. This is
// a method of object equality, that only returns true if obj is also a double.
public override bool Equals(Object obj) {
if (!(obj is Double)) {
return false;
}
double temp = ((Double)obj).m_value;
// This code below is written this way for performance reasons i.e the != and == check is intentional.
if (temp == m_value) {
return true;
}
return IsNaN(temp) && IsNaN(m_value);
}
[System.Runtime.Versioning.NonVersionable]
public static bool operator ==(Double left, Double right) {
return left == right;
}
[System.Runtime.Versioning.NonVersionable]
public static bool operator !=(Double left, Double right) {
return left != right;
}
[System.Runtime.Versioning.NonVersionable]
public static bool operator <(Double left, Double right) {
return left < right;
}
[System.Runtime.Versioning.NonVersionable]
public static bool operator >(Double left, Double right) {
return left > right;
}
[System.Runtime.Versioning.NonVersionable]
public static bool operator <=(Double left, Double right) {
return left <= right;
}
[System.Runtime.Versioning.NonVersionable]
public static bool operator >=(Double left, Double right) {
return left >= right;
}
public bool Equals(Double obj)
{
if (obj == m_value) {
return true;
}
return IsNaN(obj) && IsNaN(m_value);
}
//The hashcode for a double is the absolute value of the integer representation
//of that double.
//
[System.Security.SecuritySafeCritical]
public unsafe override int GetHashCode() {
double d = m_value;
if (d == 0) {
// Ensure that 0 and -0 have the same hash code
return 0;
}
long value = *(long*)(&d);
return unchecked((int)value) ^ ((int)(value >> 32));
}
[System.Security.SecuritySafeCritical] // auto-generated
public override String ToString() {
Contract.Ensures(Contract.Result<String>() != null);
return Number.FormatDouble(m_value, null, NumberFormatInfo.CurrentInfo);
}
[System.Security.SecuritySafeCritical] // auto-generated
public String ToString(String format) {
Contract.Ensures(Contract.Result<String>() != null);
return Number.FormatDouble(m_value, format, NumberFormatInfo.CurrentInfo);
}
[System.Security.SecuritySafeCritical] // auto-generated
public String ToString(IFormatProvider provider) {
Contract.Ensures(Contract.Result<String>() != null);
return Number.FormatDouble(m_value, null, NumberFormatInfo.GetInstance(provider));
}
[System.Security.SecuritySafeCritical] // auto-generated
public String ToString(String format, IFormatProvider provider) {
Contract.Ensures(Contract.Result<String>() != null);
return Number.FormatDouble(m_value, format, NumberFormatInfo.GetInstance(provider));
}
public static double Parse(String s) {
return Parse(s, NumberStyles.Float| NumberStyles.AllowThousands, NumberFormatInfo.CurrentInfo);
}
public static double Parse(String s, NumberStyles style) {
NumberFormatInfo.ValidateParseStyleFloatingPoint(style);
return Parse(s, style, NumberFormatInfo.CurrentInfo);
}
public static double Parse(String s, IFormatProvider provider) {
return Parse(s, NumberStyles.Float| NumberStyles.AllowThousands, NumberFormatInfo.GetInstance(provider));
}
public static double Parse(String s, NumberStyles style, IFormatProvider provider) {
NumberFormatInfo.ValidateParseStyleFloatingPoint(style);
return Parse(s, style, NumberFormatInfo.GetInstance(provider));
}
// Parses a double from a String in the given style. If
// a NumberFormatInfo isn't specified, the current culture's
// NumberFormatInfo is assumed.
//
// This method will not throw an OverflowException, but will return
// PositiveInfinity or NegativeInfinity for a number that is too
// large or too small.
//
private static double Parse(String s, NumberStyles style, NumberFormatInfo info) {
return Number.ParseDouble(s, style, info);
}
public static bool TryParse(String s, out double result) {
return TryParse(s, NumberStyles.Float| NumberStyles.AllowThousands, NumberFormatInfo.CurrentInfo, out result);
}
public static bool TryParse(String s, NumberStyles style, IFormatProvider provider, out double result) {
NumberFormatInfo.ValidateParseStyleFloatingPoint(style);
return TryParse(s, style, NumberFormatInfo.GetInstance(provider), out result);
}
private static bool TryParse(String s, NumberStyles style, NumberFormatInfo info, out double result) {
if (s == null) {
result = 0;
return false;
}
bool success = Number.TryParseDouble(s, style, info, out result);
if (!success) {
String sTrim = s.Trim();
if (sTrim.Equals(info.PositiveInfinitySymbol)) {
result = PositiveInfinity;
} else if (sTrim.Equals(info.NegativeInfinitySymbol)) {
result = NegativeInfinity;
} else if (sTrim.Equals(info.NaNSymbol)) {
result = NaN;
} else
return false; // We really failed
}
return true;
}
//
// IConvertible implementation
//
public TypeCode GetTypeCode() {
return TypeCode.Double;
}
/// <internalonly/>
bool IConvertible.ToBoolean(IFormatProvider provider) {
return Convert.ToBoolean(m_value);
}
/// <internalonly/>
char IConvertible.ToChar(IFormatProvider provider) {
throw new InvalidCastException(Environment.GetResourceString("InvalidCast_FromTo", "Double", "Char"));
}
/// <internalonly/>
sbyte IConvertible.ToSByte(IFormatProvider provider) {
return Convert.ToSByte(m_value);
}
/// <internalonly/>
byte IConvertible.ToByte(IFormatProvider provider) {
return Convert.ToByte(m_value);
}
/// <internalonly/>
short IConvertible.ToInt16(IFormatProvider provider) {
return Convert.ToInt16(m_value);
}
/// <internalonly/>
ushort IConvertible.ToUInt16(IFormatProvider provider) {
return Convert.ToUInt16(m_value);
}
/// <internalonly/>
int IConvertible.ToInt32(IFormatProvider provider) {
return Convert.ToInt32(m_value);
}
/// <internalonly/>
uint IConvertible.ToUInt32(IFormatProvider provider) {
return Convert.ToUInt32(m_value);
}
/// <internalonly/>
long IConvertible.ToInt64(IFormatProvider provider) {
return Convert.ToInt64(m_value);
}
/// <internalonly/>
ulong IConvertible.ToUInt64(IFormatProvider provider) {
return Convert.ToUInt64(m_value);
}
/// <internalonly/>
float IConvertible.ToSingle(IFormatProvider provider) {
return Convert.ToSingle(m_value);
}
/// <internalonly/>
double IConvertible.ToDouble(IFormatProvider provider) {
return m_value;
}
/// <internalonly/>
Decimal IConvertible.ToDecimal(IFormatProvider provider) {
return Convert.ToDecimal(m_value);
}
/// <internalonly/>
DateTime IConvertible.ToDateTime(IFormatProvider provider) {
throw new InvalidCastException(Environment.GetResourceString("InvalidCast_FromTo", "Double", "DateTime"));
}
/// <internalonly/>
Object IConvertible.ToType(Type type, IFormatProvider provider) {
return Convert.DefaultToType((IConvertible)this, type, provider);
}
///#if GENERICS_WORK
/// //
/// // IArithmetic<Double> implementation
/// //
///
/// /// <internalonly/>
/// Double IArithmetic<Double>.AbsoluteValue(out bool overflowed) {
/// Double abs = (m_value < 0 ? -m_value : m_value);
/// overflowed = IsInfinity(abs) || IsNaN(abs);
/// return abs;
/// }
///
/// /// <internalonly/>
/// Double IArithmetic<Double>.Negate(out bool overflowed) {
/// Double neg= -m_value;
/// overflowed = IsInfinity(neg) || IsNaN(neg);
/// return neg;
/// }
///
/// /// <internalonly/>
/// Double IArithmetic<Double>.Sign(out bool overflowed) {
/// overflowed = IsNaN(m_value);
/// if (overflowed) {
/// return m_value;
/// }
/// return (m_value >= 0 ? (m_value == 0 ? 0 : 1) : -1);
/// }
///
/// /// <internalonly/>
/// Double IArithmetic<Double>.Add(Double addend, out bool overflowed) {
/// Double s = m_value + addend;
/// overflowed = IsInfinity(s) || IsNaN(s);
/// return s;
/// }
///
/// /// <internalonly/>
/// Double IArithmetic<Double>.Subtract(Double subtrahend, out bool overflowed) {
/// Double s = m_value - subtrahend;
/// overflowed = IsInfinity(s) || IsNaN(s);
/// return s;
/// }
///
/// /// <internalonly/>
/// Double IArithmetic<Double>.Multiply(Double multiplier, out bool overflowed) {
/// Double s = m_value * multiplier;
/// overflowed = IsInfinity(s) || IsNaN(s);
/// return s;
/// }
///
///
/// /// <internalonly/>
/// Double IArithmetic<Double>.Divide(Double divisor, out bool overflowed) {
/// Double s = m_value / divisor;
/// overflowed = IsInfinity(s) || IsNaN(s);
/// return s;
/// }
///
/// /// <internalonly/>
/// Double IArithmetic<Double>.DivideRemainder(Double divisor, out Double remainder, out bool overflowed) {
/// remainder = m_value % divisor;
/// Double s = m_value / divisor;
/// overflowed = IsInfinity(s) || IsInfinity(remainder) || IsNaN(s) || IsNaN(remainder);
/// return s;
/// }
///
/// /// <internalonly/>
/// Double IArithmetic<Double>.Remainder(Double divisor, out bool overflowed) {
/// Double d = m_value % divisor;
/// overflowed = IsInfinity(d) || IsNaN(d);
/// return d;
/// }
///
/// /// <internalonly/>
/// ArithmeticDescriptor<Double> IArithmetic<Double>.GetDescriptor() {
/// if (s_descriptor == null) {
/// s_descriptor = new DoubleArithmeticDescriptor( ArithmeticCapabilities.One
/// | ArithmeticCapabilities.Zero
/// | ArithmeticCapabilities.MaxValue
/// | ArithmeticCapabilities.MinValue
/// | ArithmeticCapabilities.PositiveInfinity
/// | ArithmeticCapabilities.NegativeInfinity);
/// }
/// return s_descriptor;
/// }
///
/// private static DoubleArithmeticDescriptor s_descriptor;
///
/// class DoubleArithmeticDescriptor : ArithmeticDescriptor<Double> {
/// public DoubleArithmeticDescriptor(ArithmeticCapabilities capabilities) : base(capabilities) {}
///
/// public override Double One {
/// get {
/// return (Double) 1;
/// }
/// }
///
/// public override Double Zero {
/// get {
/// return (Double) 0;
/// }
/// }
///
/// public override Double MinValue {
/// get {
/// return Double.MinValue;
/// }
/// }
///
/// public override Double MaxValue {
/// get {
/// return Double.MaxValue;
/// }
/// }
///
/// public override Double PositiveInfinity {
/// get {
/// return Double.PositiveInfinity;
/// }
/// }
///
/// public override Double NegativeInfinity {
/// get {
/// return Double.NegativeInfinity;
/// }
/// }
///
/// }
///#endif // #if GENERICS_WORK
}
}
|