|
using System.Diagnostics.Contracts;
// ==++==
//
// Copyright (c) Microsoft Corporation. All rights reserved.
//
// ==--==
// <OWNER>Microsoft</OWNER>
//
//
// SymmetricAlgorithm.cs
//
namespace System.Security.Cryptography {
[System.Runtime.InteropServices.ComVisible(true)]
public abstract class SymmetricAlgorithm : IDisposable {
protected int BlockSizeValue;
protected int FeedbackSizeValue;
protected byte[] IVValue;
protected byte[] KeyValue;
protected KeySizes[] LegalBlockSizesValue;
protected KeySizes[] LegalKeySizesValue;
protected int KeySizeValue;
protected CipherMode ModeValue;
protected PaddingMode PaddingValue;
//
// protected constructors
//
protected SymmetricAlgorithm() {
// Default to cipher block chaining (CipherMode.CBC) and
// PKCS-style padding (pad n bytes with value n)
ModeValue = CipherMode.CBC;
PaddingValue = PaddingMode.PKCS7;
}
// SymmetricAlgorithm implements IDisposable
// To keep mscorlib compatibility with Orcas, CoreCLR's SymmetricAlgorithm has an explicit IDisposable
// implementation. Post-Orcas the desktop has an implicit IDispoable implementation.
#if FEATURE_CORECLR
void IDisposable.Dispose()
{
Dispose();
}
#endif // FEATURE_CORECLR
public void Dispose()
{
Dispose(true);
GC.SuppressFinalize(this);
}
public void Clear() {
(this as IDisposable).Dispose();
}
protected virtual void Dispose(bool disposing) {
if (disposing) {
// Note: we always want to zeroize the sensitive key material
if (KeyValue != null) {
Array.Clear(KeyValue, 0, KeyValue.Length);
KeyValue = null;
}
if (IVValue != null) {
Array.Clear(IVValue, 0, IVValue.Length);
IVValue = null;
}
}
}
//
// public properties
//
public virtual int BlockSize {
get { return BlockSizeValue; }
set {
int i;
int j;
for (i=0; i<LegalBlockSizesValue.Length; i++) {
// If a cipher has only one valid key size, MinSize == MaxSize and SkipSize will be 0
if (LegalBlockSizesValue[i].SkipSize == 0) {
if (LegalBlockSizesValue[i].MinSize == value) { // assume MinSize = MaxSize
BlockSizeValue = value;
IVValue = null;
return;
}
} else {
for (j = LegalBlockSizesValue[i].MinSize; j<=LegalBlockSizesValue[i].MaxSize;
j += LegalBlockSizesValue[i].SkipSize) {
if (j == value) {
if (BlockSizeValue != value) {
BlockSizeValue = value;
IVValue = null; // Wrong length now
}
return;
}
}
}
}
throw new CryptographicException(Environment.GetResourceString("Cryptography_InvalidBlockSize"));
}
}
public virtual int FeedbackSize {
get { return FeedbackSizeValue; }
set {
if (value <= 0 || value > BlockSizeValue || (value % 8) != 0)
throw new CryptographicException(Environment.GetResourceString("Cryptography_InvalidFeedbackSize"));
FeedbackSizeValue = value;
}
}
public virtual byte[] IV {
get {
if (IVValue == null) GenerateIV();
return (byte[]) IVValue.Clone();
}
set {
if (value == null) throw new ArgumentNullException("value");
Contract.EndContractBlock();
if (value.Length != BlockSizeValue / 8)
throw new CryptographicException(Environment.GetResourceString("Cryptography_InvalidIVSize"));
IVValue = (byte[]) value.Clone();
}
}
public virtual byte[] Key {
get {
if (KeyValue == null) GenerateKey();
return (byte[]) KeyValue.Clone();
}
set {
if (value == null) throw new ArgumentNullException("value");
Contract.EndContractBlock();
if (!ValidKeySize(value.Length * 8))
throw new CryptographicException(Environment.GetResourceString("Cryptography_InvalidKeySize"));
// must convert bytes to bits
KeyValue = (byte[]) value.Clone();
KeySizeValue = value.Length * 8;
}
}
public virtual KeySizes[] LegalBlockSizes {
get { return (KeySizes[]) LegalBlockSizesValue.Clone(); }
}
public virtual KeySizes[] LegalKeySizes {
get { return (KeySizes[]) LegalKeySizesValue.Clone(); }
}
public virtual int KeySize {
get { return KeySizeValue; }
set {
if (!ValidKeySize(value))
throw new CryptographicException(Environment.GetResourceString("Cryptography_InvalidKeySize"));
KeySizeValue = value;
KeyValue = null;
}
}
public virtual CipherMode Mode {
get { return ModeValue; }
set {
if ((value < CipherMode.CBC) || (CipherMode.CFB < value))
throw new CryptographicException(Environment.GetResourceString("Cryptography_InvalidCipherMode"));
ModeValue = value;
}
}
public virtual PaddingMode Padding {
get { return PaddingValue; }
set {
if ((value < PaddingMode.None) || (PaddingMode.ISO10126 < value))
throw new CryptographicException(Environment.GetResourceString("Cryptography_InvalidPaddingMode"));
PaddingValue = value;
}
}
//
// public methods
//
// The following method takes a bit length input and returns whether that length is a valid size
// according to LegalKeySizes
public bool ValidKeySize(int bitLength) {
KeySizes[] validSizes = this.LegalKeySizes;
int i,j;
if (validSizes == null) return false;
for (i=0; i< validSizes.Length; i++) {
if (validSizes[i].SkipSize == 0) {
if (validSizes[i].MinSize == bitLength) { // assume MinSize = MaxSize
return true;
}
} else {
for (j = validSizes[i].MinSize; j<= validSizes[i].MaxSize;
j += validSizes[i].SkipSize) {
if (j == bitLength) {
return true;
}
}
}
}
return false;
}
static public SymmetricAlgorithm Create() {
// use the crypto config system to return an instance of
// the default SymmetricAlgorithm on this machine
return Create("System.Security.Cryptography.SymmetricAlgorithm");
}
static public SymmetricAlgorithm Create(String algName) {
return (SymmetricAlgorithm) CryptoConfig.CreateFromName(algName);
}
public virtual ICryptoTransform CreateEncryptor() {
return CreateEncryptor(Key, IV);
}
public abstract ICryptoTransform CreateEncryptor(byte[] rgbKey, byte[] rgbIV);
public virtual ICryptoTransform CreateDecryptor() {
return CreateDecryptor(Key, IV);
}
public abstract ICryptoTransform CreateDecryptor(byte[] rgbKey, byte[] rgbIV);
public abstract void GenerateKey();
public abstract void GenerateIV();
}
}
|