|
// ==++==
//
// Copyright (c) Microsoft Corporation. All rights reserved.
//
// ==--==
// <OWNER>Microsoft</OWNER>
//
//
// SHA384Managed.cs
//
// C# implementation of the proposed SHA-384 hash algorithm
//
namespace System.Security.Cryptography {
using System;
using System.Diagnostics.Contracts;
[System.Runtime.InteropServices.ComVisible(true)]
public class SHA384Managed : SHA384
{
private SHA384 _impl;
private byte[] _buffer;
private ulong _count; // Number of bytes in the hashed message
private UInt64[] _stateSHA384;
private UInt64[] _W;
//
// public constructors
//
public SHA384Managed()
{
// .NET Framework 2.0 - 4.7.2 rejected all managed implementations when in FIPS mode
// because the implementations are not certified. This causes problems for users who
// need to run in FIPS mode when applications or libraries were written on systems
// which did not.
//
// Rather than throw an Exception that an uncertified implementation is in use, the
// behavior now is to shim into a wrapper over the Windows implementation in the
// managed types.
if (CryptoConfig.AllowOnlyFipsAlgorithms && AppContextSwitches.UseLegacyFipsThrow)
throw new InvalidOperationException(Environment.GetResourceString("Cryptography_NonCompliantFIPSAlgorithm"));
Contract.EndContractBlock();
if (CryptoConfig.AllowOnlyFipsAlgorithms) {
_impl = SHA384.Create();
} else {
_stateSHA384 = new UInt64[8];
_buffer = new byte[128];
_W = new UInt64[80];
InitializeState();
}
}
//
// public methods
//
public override void Initialize() {
if (_impl != null) {
_impl.Initialize();
} else {
InitializeState();
// Zeroize potentially sensitive information.
Array.Clear(_buffer, 0, _buffer.Length);
Array.Clear(_W, 0, _W.Length);
}
}
[System.Security.SecuritySafeCritical] // auto-generated
protected override void HashCore(byte[] rgb, int ibStart, int cbSize) {
if (_impl != null) {
_impl.TransformBlock(rgb, ibStart, cbSize, null, 0);
} else {
_HashData(rgb, ibStart, cbSize);
}
}
[System.Security.SecuritySafeCritical] // auto-generated
protected override byte[] HashFinal() {
if (_impl != null) {
_impl.TransformFinalBlock(Array.Empty<byte>(), 0, 0);
return _impl.Hash;
}
return _EndHash();
}
protected override void Dispose(bool disposing) {
if (disposing) {
if (_impl != null) {
_impl.Dispose();
// Don't null this out, or we exit "shimming mode".
}
}
base.Dispose(disposing);
}
//
// private methods
//
private void InitializeState() {
_count = 0;
_stateSHA384[0] = 0xcbbb9d5dc1059ed8;
_stateSHA384[1] = 0x629a292a367cd507;
_stateSHA384[2] = 0x9159015a3070dd17;
_stateSHA384[3] = 0x152fecd8f70e5939;
_stateSHA384[4] = 0x67332667ffc00b31;
_stateSHA384[5] = 0x8eb44a8768581511;
_stateSHA384[6] = 0xdb0c2e0d64f98fa7;
_stateSHA384[7] = 0x47b5481dbefa4fa4;
}
/* SHA384 block update operation. Continues an SHA message-digest
operation, processing another message block, and updating the
context.
*/
[System.Security.SecurityCritical] // auto-generated
private unsafe void _HashData(byte[] partIn, int ibStart, int cbSize)
{
int bufferLen;
int partInLen = cbSize;
int partInBase = ibStart;
/* Compute length of buffer */
bufferLen = (int) (_count & 0x7f);
/* Update number of bytes */
_count += (ulong) partInLen;
fixed (UInt64* stateSHA384 = _stateSHA384) {
fixed (byte* buffer = _buffer) {
fixed (UInt64* expandedBuffer = _W) {
if ((bufferLen > 0) && (bufferLen + partInLen >= 128)) {
Buffer.InternalBlockCopy(partIn, partInBase, _buffer, bufferLen, 128 - bufferLen);
partInBase += (128 - bufferLen);
partInLen -= (128 - bufferLen);
SHATransform(expandedBuffer, stateSHA384, buffer);
bufferLen = 0;
}
/* Copy input to temporary buffer and hash */
while (partInLen >= 128) {
Buffer.InternalBlockCopy(partIn, partInBase, _buffer, 0, 128);
partInBase += 128;
partInLen -= 128;
SHATransform(expandedBuffer, stateSHA384, buffer);
}
if (partInLen > 0) {
Buffer.InternalBlockCopy(partIn, partInBase, _buffer, bufferLen, partInLen);
}
}
}
}
}
/* SHA384 finalization. Ends an SHA384 message-digest operation, writing
the message digest.
*/
[System.Security.SecurityCritical] // auto-generated
private byte[] _EndHash()
{
byte[] pad;
int padLen;
ulong bitCount;
byte[] hash = new byte[48]; // HashSizeValue = 384
/* Compute padding: 80 00 00 ... 00 00 <bit count>
*/
padLen = 128 - (int)(_count & 0x7f);
if (padLen <= 16)
padLen += 128;
pad = new byte[padLen];
pad[0] = 0x80;
// Convert count to bit count
bitCount = _count * 8;
// bitCount is at most 8 * 128 = 1024. Its representation as a 128-bit number has all bits set to zero
// except eventually the 11 lower bits
//pad[padLen-16] = (byte) ((bitCount >> 120) & 0xff);
//pad[padLen-15] = (byte) ((bitCount >> 112) & 0xff);
//pad[padLen-14] = (byte) ((bitCount >> 104) & 0xff);
//pad[padLen-13] = (byte) ((bitCount >> 96) & 0xff);
//pad[padLen-12] = (byte) ((bitCount >> 88) & 0xff);
//pad[padLen-11] = (byte) ((bitCount >> 80) & 0xff);
//pad[padLen-10] = (byte) ((bitCount >> 72) & 0xff);
//pad[padLen-9] = (byte) ((bitCount >> 64) & 0xff);
pad[padLen-8] = (byte) ((bitCount >> 56) & 0xff);
pad[padLen-7] = (byte) ((bitCount >> 48) & 0xff);
pad[padLen-6] = (byte) ((bitCount >> 40) & 0xff);
pad[padLen-5] = (byte) ((bitCount >> 32) & 0xff);
pad[padLen-4] = (byte) ((bitCount >> 24) & 0xff);
pad[padLen-3] = (byte) ((bitCount >> 16) & 0xff);
pad[padLen-2] = (byte) ((bitCount >> 8) & 0xff);
pad[padLen-1] = (byte) ((bitCount >> 0) & 0xff);
/* Digest padding */
_HashData(pad, 0, pad.Length);
/* Store digest */
Utils.QuadWordToBigEndian (hash, _stateSHA384, 6);
HashValue = hash;
return hash;
}
private readonly static UInt64[] _K = {
0x428a2f98d728ae22, 0x7137449123ef65cd, 0xb5c0fbcfec4d3b2f, 0xe9b5dba58189dbbc,
0x3956c25bf348b538, 0x59f111f1b605d019, 0x923f82a4af194f9b, 0xab1c5ed5da6d8118,
0xd807aa98a3030242, 0x12835b0145706fbe, 0x243185be4ee4b28c, 0x550c7dc3d5ffb4e2,
0x72be5d74f27b896f, 0x80deb1fe3b1696b1, 0x9bdc06a725c71235, 0xc19bf174cf692694,
0xe49b69c19ef14ad2, 0xefbe4786384f25e3, 0x0fc19dc68b8cd5b5, 0x240ca1cc77ac9c65,
0x2de92c6f592b0275, 0x4a7484aa6ea6e483, 0x5cb0a9dcbd41fbd4, 0x76f988da831153b5,
0x983e5152ee66dfab, 0xa831c66d2db43210, 0xb00327c898fb213f, 0xbf597fc7beef0ee4,
0xc6e00bf33da88fc2, 0xd5a79147930aa725, 0x06ca6351e003826f, 0x142929670a0e6e70,
0x27b70a8546d22ffc, 0x2e1b21385c26c926, 0x4d2c6dfc5ac42aed, 0x53380d139d95b3df,
0x650a73548baf63de, 0x766a0abb3c77b2a8, 0x81c2c92e47edaee6, 0x92722c851482353b,
0xa2bfe8a14cf10364, 0xa81a664bbc423001, 0xc24b8b70d0f89791, 0xc76c51a30654be30,
0xd192e819d6ef5218, 0xd69906245565a910, 0xf40e35855771202a, 0x106aa07032bbd1b8,
0x19a4c116b8d2d0c8, 0x1e376c085141ab53, 0x2748774cdf8eeb99, 0x34b0bcb5e19b48a8,
0x391c0cb3c5c95a63, 0x4ed8aa4ae3418acb, 0x5b9cca4f7763e373, 0x682e6ff3d6b2b8a3,
0x748f82ee5defb2fc, 0x78a5636f43172f60, 0x84c87814a1f0ab72, 0x8cc702081a6439ec,
0x90befffa23631e28, 0xa4506cebde82bde9, 0xbef9a3f7b2c67915, 0xc67178f2e372532b,
0xca273eceea26619c, 0xd186b8c721c0c207, 0xeada7dd6cde0eb1e, 0xf57d4f7fee6ed178,
0x06f067aa72176fba, 0x0a637dc5a2c898a6, 0x113f9804bef90dae, 0x1b710b35131c471b,
0x28db77f523047d84, 0x32caab7b40c72493, 0x3c9ebe0a15c9bebc, 0x431d67c49c100d4c,
0x4cc5d4becb3e42b6, 0x597f299cfc657e2a, 0x5fcb6fab3ad6faec, 0x6c44198c4a475817,
};
[System.Security.SecurityCritical] // auto-generated
private static unsafe void SHATransform (UInt64* expandedBuffer, UInt64* state, byte* block)
{
UInt64 a, b, c, d, e, f, g, h;
UInt64 aa, bb, cc, dd, ee, ff, hh, gg;
UInt64 T1;
a = state[0];
b = state[1];
c = state[2];
d = state[3];
e = state[4];
f = state[5];
g = state[6];
h = state[7];
// fill in the first 16 blocks of W.
Utils.QuadWordFromBigEndian (expandedBuffer, 16, block);
SHA384Expand (expandedBuffer);
/* Apply the SHA384 compression function */
// We are trying to be smart here and avoid as many copies as we can
// The perf gain with this method over the straightforward modify and shift
// forward is >= 20%, so it's worth the pain
for (int j=0; j<80; ) {
T1 = h + Sigma_1(e) + Ch(e,f,g) + _K[j] + expandedBuffer[j];
ee = d + T1;
aa = T1 + Sigma_0(a) + Maj(a,b,c);
j++;
T1 = g + Sigma_1(ee) + Ch(ee,e,f) + _K[j] + expandedBuffer[j];
ff = c + T1;
bb = T1 + Sigma_0(aa) + Maj(aa,a,b);
j++;
T1 = f + Sigma_1(ff) + Ch(ff,ee,e) + _K[j] + expandedBuffer[j];
gg = b + T1;
cc = T1 + Sigma_0(bb) + Maj(bb,aa,a);
j++;
T1 = e + Sigma_1(gg) + Ch(gg,ff,ee) + _K[j] + expandedBuffer[j];
hh = a + T1;
dd = T1 + Sigma_0(cc) + Maj(cc,bb,aa);
j++;
T1 = ee + Sigma_1(hh) + Ch(hh,gg,ff) + _K[j] + expandedBuffer[j];
h = aa + T1;
d = T1 + Sigma_0(dd) + Maj(dd,cc,bb);
j++;
T1 = ff + Sigma_1(h) + Ch(h,hh,gg) + _K[j] + expandedBuffer[j];
g = bb + T1;
c = T1 + Sigma_0(d) + Maj(d,dd,cc);
j++;
T1 = gg + Sigma_1(g) + Ch(g,h,hh) + _K[j] + expandedBuffer[j];
f = cc + T1;
b = T1 + Sigma_0(c) + Maj(c,d,dd);
j++;
T1 = hh + Sigma_1(f) + Ch(f,g,h) + _K[j] + expandedBuffer[j];
e = dd + T1;
a = T1 + Sigma_0(b) + Maj(b,c,d);
j++;
}
state[0] += a;
state[1] += b;
state[2] += c;
state[3] += d;
state[4] += e;
state[5] += f;
state[6] += g;
state[7] += h;
}
private static UInt64 RotateRight(UInt64 x, int n) {
return (((x) >> (n)) | ((x) << (64-(n))));
}
private static UInt64 Ch(UInt64 x, UInt64 y, UInt64 z) {
return ((x & y) ^ ((x ^ 0xffffffffffffffff) & z));
}
private static UInt64 Maj(UInt64 x, UInt64 y, UInt64 z) {
return ((x & y) ^ (x & z) ^ (y & z));
}
private static UInt64 Sigma_0(UInt64 x) {
return (RotateRight(x,28) ^ RotateRight(x,34) ^ RotateRight(x,39));
}
private static UInt64 Sigma_1(UInt64 x) {
return (RotateRight(x,14) ^ RotateRight(x,18) ^ RotateRight(x,41));
}
private static UInt64 sigma_0(UInt64 x) {
return (RotateRight(x,1) ^ RotateRight(x,8) ^ (x >> 7));
}
private static UInt64 sigma_1(UInt64 x) {
return (RotateRight(x,19) ^ RotateRight(x,61) ^ (x >> 6));
}
/* This function creates W_16,...,W_79 according to the formula
W_j <- sigma_1(W_{j-2}) + W_{j-7} + sigma_0(W_{j-15}) + W_{j-16};
*/
[System.Security.SecurityCritical] // auto-generated
private static unsafe void SHA384Expand (UInt64* x)
{
for (int i = 16; i < 80; i++) {
x[i] = sigma_1(x[i-2]) + x[i-7] + sigma_0(x[i-15]) + x[i-16];
}
}
}
}
|