File: system\runtime\interopservices\safebuffer.cs
Project: ndp\clr\src\bcl\mscorlib.csproj (mscorlib)
// ==++==
// 
//   Copyright (c) Microsoft Corporation.  All rights reserved.
// 
// ==--==
/*============================================================
**
** Purpose: Unsafe code that uses pointers should use 
** SafePointer to fix subtle lifetime problems with the 
** underlying resource.
**
===========================================================*/
 
// Design points:
// *) Avoid handle-recycling problems (including ones triggered via 
// resurrection attacks) for all accesses via pointers.  This requires tying
// together the lifetime of the unmanaged resource with the code that reads 
// from that resource, in a package that uses synchronization to enforce
// the correct semantics during finalization.  We're using SafeHandle's
// ref count as a gate on whether the pointer can be dereferenced because that
// controls the lifetime of the resource.
//
// *) Keep the penalties for using this class small, both in terms of space
// and time.  Having multiple threads reading from a memory mapped file
// will already require 2 additional interlocked operations.  If we add in
// a "current position" concept, that requires additional space in memory and
// synchronization.  Since the position in memory is often (but not always)
// something that can be stored on the stack, we can save some memory by 
// excluding it from this object.  However, avoiding the need for 
// synchronization is a more significant win.  This design allows multiple 
// threads to read and write memory simultaneously without locks (as long as 
// you don't write to a region of memory that overlaps with what another 
// thread is accessing).
// 
// *) Space-wise, we use the following memory, including SafeHandle's fields:
// Object Header  MT*  handle  int bool bool <2 pad bytes> length
// On 32 bit platforms: 24 bytes.  On 64 bit platforms: 40 bytes.
// (We can safe 4 bytes on x86 only by shrinking SafeHandle)
//
// *) Wrapping a SafeHandle would have been a nice solution, but without an
// ordering between critical finalizable objects, it would have required 
// changes to each SafeHandle subclass to opt in to being usable from a 
// SafeBuffer (or some clever exposure of SafeHandle's state fields and a
// way of forcing ReleaseHandle to run even after the SafeHandle has been 
// finalized with a ref count > 1).  We can use less memory and create fewer
// objects by simply inserting a SafeBuffer into the class hierarchy.
//
// *) In an ideal world, we could get marshaling support for SafeBuffer that
// would allow us to annotate a P/Invoke declaration, saying this parameter
// specifies the length of the buffer, and the units of that length are X.
// P/Invoke would then pass that size parameter to SafeBuffer.
//     [DllImport(...)]
//     static extern SafeMemoryHandle AllocCharBuffer(int numChars);
// If we could put an attribute on the SafeMemoryHandle saying numChars is
// the element length, and it must be multiplied by 2 to get to the byte
// length, we can simplify the usage model for SafeBuffer.
//
// *) This class could benefit from a constraint saying T is a value type
// containing no GC references.
 
// Implementation notes:
// *) The Initialize method must be called before you use any instance of
// a SafeBuffer.  To avoid ----s when storing SafeBuffers in statics,
// you either need to take a lock when publishing the SafeBuffer, or you
// need to create a local, initialize the SafeBuffer, then assign to the
// static variable (perhaps using Interlocked.CompareExchange).  Of course,
// assignments in a static class constructor are under a lock implicitly.
 
 
namespace System.Runtime.InteropServices
{
using System;
using System.Security.Permissions;
using System.Runtime.InteropServices;
using System.Runtime.CompilerServices;
using System.Runtime.ConstrainedExecution;
using System.Runtime.Versioning;
using Microsoft.Win32.SafeHandles;
using System.Diagnostics.Contracts;
 
 
    [System.Security.SecurityCritical]
    public abstract unsafe class SafeBuffer : SafeHandleZeroOrMinusOneIsInvalid
    {
        // Steal UIntPtr.MaxValue as our uninitialized value.
        private static readonly UIntPtr Uninitialized = (UIntPtr.Size == 4) ? 
            ((UIntPtr) UInt32.MaxValue) : ((UIntPtr) UInt64.MaxValue);
 
        private UIntPtr _numBytes;
 
        protected SafeBuffer(bool ownsHandle) : base(ownsHandle)
        {
            _numBytes = Uninitialized;
        }
 
        /// <summary>
        /// Specifies the size of the region of memory, in bytes.  Must be 
        /// called before using the SafeBuffer.
        /// </summary>
        /// <param name="numBytes">Number of valid bytes in memory.</param>
        [CLSCompliant(false)]
        public void Initialize(ulong numBytes)
        {
            if (numBytes < 0)
                throw new ArgumentOutOfRangeException("numBytes", Environment.GetResourceString("ArgumentOutOfRange_NeedNonNegNum"));
            if (IntPtr.Size == 4 && numBytes > UInt32.MaxValue)
                throw new ArgumentOutOfRangeException("numBytes", Environment.GetResourceString("ArgumentOutOfRange_AddressSpace"));
            Contract.EndContractBlock();
 
            if (numBytes >= (ulong)Uninitialized)
                throw new ArgumentOutOfRangeException("numBytes", Environment.GetResourceString("ArgumentOutOfRange_UIntPtrMax-1"));
 
            _numBytes = (UIntPtr) numBytes;
        }
 
        /// <summary>
        /// Specifies the the size of the region in memory, as the number of 
        /// elements in an array.  Must be called before using the SafeBuffer.
        /// </summary>
        [CLSCompliant(false)]
        public void Initialize(uint numElements, uint sizeOfEachElement)
        {
            if (numElements < 0)
                throw new ArgumentOutOfRangeException("numElements", Environment.GetResourceString("ArgumentOutOfRange_NeedNonNegNum"));
            if (sizeOfEachElement < 0)
                throw new ArgumentOutOfRangeException("sizeOfEachElement", Environment.GetResourceString("ArgumentOutOfRange_NeedNonNegNum"));
 
            if (IntPtr.Size == 4 && numElements * sizeOfEachElement > UInt32.MaxValue)
                throw new ArgumentOutOfRangeException("numBytes", Environment.GetResourceString("ArgumentOutOfRange_AddressSpace"));
            Contract.EndContractBlock();
 
            if (numElements * sizeOfEachElement >= (ulong)Uninitialized)
                throw new ArgumentOutOfRangeException("numElements", Environment.GetResourceString("ArgumentOutOfRange_UIntPtrMax-1"));
 
            _numBytes = checked((UIntPtr) (numElements * sizeOfEachElement));
        }
 
        /// <summary>
        /// Specifies the the size of the region in memory, as the number of 
        /// elements in an array.  Must be called before using the SafeBuffer.
        /// </summary>
        [CLSCompliant(false)]
        public void Initialize<T>(uint numElements) where T : struct
        {
            Initialize(numElements, Marshal.AlignedSizeOf<T>());
        }
 
        // Callers should ensure that they check whether the pointer ref param
        // is null when AcquirePointer returns.  If it is not null, they must 
        // call ReleasePointer in a CER.  This method calls DangerousAddRef 
        // & exposes the pointer. Unlike Read, it does not alter the "current 
        // position" of the pointer.  Here's how to use it:
        //
        // byte* pointer = null;
        // RuntimeHelpers.PrepareConstrainedRegions();
        // try {
        //     safeBuffer.AcquirePointer(ref pointer);
        //     // Use pointer here, with your own bounds checking
        // }
        // finally {
        //     if (pointer != null)
        //         safeBuffer.ReleasePointer();
        // }
        //
        // Note: If you cast this byte* to a T*, you have to worry about 
        // whether your pointer is aligned.  Additionally, you must take
        // responsibility for all bounds checking with this pointer.
        /// <summary>
        /// Obtain the pointer from a SafeBuffer for a block of code,
        /// with the express responsibility for bounds checking and calling 
        /// ReleasePointer later within a CER to ensure the pointer can be 
        /// freed later.  This method either completes successfully or 
        /// throws an exception and returns with pointer set to null.
        /// </summary>
        /// <param name="pointer">A byte*, passed by reference, to receive
        /// the pointer from within the SafeBuffer.  You must set
        /// pointer to null before calling this method.</param>
        [CLSCompliant(false)]
        [ReliabilityContract(Consistency.WillNotCorruptState, Cer.MayFail)]
        public void AcquirePointer(ref byte* pointer)
        {
            if (_numBytes == Uninitialized)
                throw NotInitialized();
 
            pointer = null;
            RuntimeHelpers.PrepareConstrainedRegions();
            try
            {
            }
            finally
            {
                bool junk = false;
                DangerousAddRef(ref junk);
                pointer = (byte*)handle;
            }
        }
 
        [ReliabilityContract(Consistency.WillNotCorruptState, Cer.Success)]
        public void ReleasePointer()
        {
            if (_numBytes == Uninitialized)
                throw NotInitialized();
 
            DangerousRelease();
        }
#if !FEATURE_CORECLR || FEATURE_CORESYSTEM
        /// <summary>
        /// Read a value type from memory at the given offset.  This is
        /// equivalent to:  return *(T*)(bytePtr + byteOffset);
        /// </summary>
        /// <typeparam name="T">The value type to read</typeparam>
        /// <param name="byteOffset">Where to start reading from memory.  You 
        /// may have to consider alignment.</param>
        /// <returns>An instance of T read from memory.</returns>
        [CLSCompliant(false)]
        [ReliabilityContract(Consistency.WillNotCorruptState, Cer.MayFail)]
        public T Read<T>(ulong byteOffset) where T : struct {
            if (_numBytes == Uninitialized)
                throw NotInitialized();
 
            uint sizeofT = Marshal.SizeOfType(typeof(T));
            byte* ptr = (byte*)handle + byteOffset;
            SpaceCheck(ptr, sizeofT);
 
            // return *(T*) (_ptr + byteOffset);
            T value;
            bool mustCallRelease = false;
            RuntimeHelpers.PrepareConstrainedRegions();
            try
            {
                DangerousAddRef(ref mustCallRelease);
 
                GenericPtrToStructure<T>(ptr, out value, sizeofT);
            }
            finally
            {
                if (mustCallRelease)
                    DangerousRelease();
            }
            return value;
        }
 
        [CLSCompliant(false)]
        [ReliabilityContract(Consistency.WillNotCorruptState, Cer.MayFail)]
        public void ReadArray<T>(ulong byteOffset, T[] array, int index, int count)
            where T : struct
        {
            if (array == null)
                throw new ArgumentNullException("array", Environment.GetResourceString("ArgumentNull_Buffer"));
            if (index < 0)
                throw new ArgumentOutOfRangeException("index", Environment.GetResourceString("ArgumentOutOfRange_NeedNonNegNum"));
            if (count < 0)
                throw new ArgumentOutOfRangeException("count", Environment.GetResourceString("ArgumentOutOfRange_NeedNonNegNum"));
            if (array.Length - index < count)
                throw new ArgumentException(Environment.GetResourceString("Argument_InvalidOffLen"));
            Contract.EndContractBlock();
 
            if (_numBytes == Uninitialized)
                throw NotInitialized();
 
            uint sizeofT = Marshal.SizeOfType(typeof(T));
            uint alignedSizeofT = Marshal.AlignedSizeOf<T>();
            byte* ptr = (byte*)handle + byteOffset;
            SpaceCheck(ptr, checked((ulong)(alignedSizeofT * count)));
 
            bool mustCallRelease = false;
            RuntimeHelpers.PrepareConstrainedRegions();
            try
            {
                DangerousAddRef(ref mustCallRelease);
 
                for (int i = 0; i < count; i++)
                    unsafe { GenericPtrToStructure<T>(ptr + alignedSizeofT * i, out array[i + index], sizeofT); }
            }
            finally
            {
                if (mustCallRelease)
                    DangerousRelease();
            }
        }
 
        /// <summary>
        /// Write a value type to memory at the given offset.  This is
        /// equivalent to:  *(T*)(bytePtr + byteOffset) = value;
        /// </summary>
        /// <typeparam name="T">The type of the value type to write to memory.</typeparam>
        /// <param name="byteOffset">The location in memory to write to.  You 
        /// may have to consider alignment.</param>
        /// <param name="value">The value type to write to memory.</param>
        [CLSCompliant(false)]
        [ReliabilityContract(Consistency.WillNotCorruptState, Cer.MayFail)]
        public void Write<T>(ulong byteOffset, T value) where T : struct {
            if (_numBytes == Uninitialized)
                throw NotInitialized();
 
            uint sizeofT = Marshal.SizeOfType(typeof(T));
            byte* ptr = (byte*)handle + byteOffset;
            SpaceCheck(ptr, sizeofT);
 
            // *((T*) (_ptr + byteOffset)) = value;
            bool mustCallRelease = false;
            RuntimeHelpers.PrepareConstrainedRegions();
            try
            {
                DangerousAddRef(ref mustCallRelease);
                GenericStructureToPtr(ref value, ptr, sizeofT);
            }
            finally
            {
                if (mustCallRelease)
                    DangerousRelease();
            }
        }
 
        [CLSCompliant(false)]
        [ReliabilityContract(Consistency.WillNotCorruptState, Cer.MayFail)]
        public void WriteArray<T>(ulong byteOffset, T[] array, int index, int count)
            where T : struct
        {
            if (array == null)
                throw new ArgumentNullException("array", Environment.GetResourceString("ArgumentNull_Buffer"));
            if (index < 0)
                throw new ArgumentOutOfRangeException("index", Environment.GetResourceString("ArgumentOutOfRange_NeedNonNegNum"));
            if (count < 0)
                throw new ArgumentOutOfRangeException("count", Environment.GetResourceString("ArgumentOutOfRange_NeedNonNegNum"));
            if (array.Length - index < count)
                throw new ArgumentException(Environment.GetResourceString("Argument_InvalidOffLen"));
            Contract.EndContractBlock();
 
            if (_numBytes == Uninitialized)
                throw NotInitialized();
 
            uint sizeofT = Marshal.SizeOfType(typeof(T));
            uint alignedSizeofT = Marshal.AlignedSizeOf<T>();
            byte* ptr = (byte*)handle + byteOffset;
            SpaceCheck(ptr, checked((ulong)(alignedSizeofT * count)));
            
            bool mustCallRelease = false;
            RuntimeHelpers.PrepareConstrainedRegions();
            try
            {
                DangerousAddRef(ref mustCallRelease);
                for (int i = 0; i < count; i++)
                    unsafe { GenericStructureToPtr(ref array[i + index], ptr + alignedSizeofT * i, sizeofT); }
            }
            finally
            {
                if (mustCallRelease)
                    DangerousRelease();
            }
        }
#endif // !FEATURE_CORECLR || FEATURE_CORESYSTEM
 
 
        /// <summary>
        /// Returns the number of bytes in the memory region.
        /// </summary>
        [CLSCompliant(false)]
        public ulong ByteLength {
            [ReliabilityContract(Consistency.WillNotCorruptState, Cer.Success)]
            get {
                if (_numBytes == Uninitialized)
                    throw NotInitialized();
 
                return (ulong) _numBytes; 
            }
        }
 
        /* No indexer.  The perf would be misleadingly bad.  People should use 
         * AcquirePointer and ReleasePointer instead.  */
        
        [ReliabilityContract(Consistency.WillNotCorruptState, Cer.Success)]
        private void SpaceCheck(byte* ptr, ulong sizeInBytes)
        {
            if ((ulong)_numBytes < sizeInBytes)
                NotEnoughRoom();
            if ((ulong)(ptr - (byte*) handle) > ((ulong)_numBytes) - sizeInBytes)
                NotEnoughRoom();
        }
 
        [ReliabilityContract(Consistency.WillNotCorruptState, Cer.Success)]
        private static void NotEnoughRoom()
        {
            throw new ArgumentException(Environment.GetResourceString("Arg_BufferTooSmall"));
        }
 
        [ReliabilityContract(Consistency.WillNotCorruptState, Cer.Success)]
        private static InvalidOperationException NotInitialized()
        {
            Contract.Assert(false, "Uninitialized SafeBuffer!  Someone needs to call Initialize before using this instance!");
            return new InvalidOperationException(Environment.GetResourceString("InvalidOperation_MustCallInitialize"));
        }
 
        // FCALL limitations mean we can't have generic FCALL methods.  However, we can pass 
        // TypedReferences to FCALL methods.
        [ReliabilityContract(Consistency.WillNotCorruptState, Cer.Success)]
        internal static void GenericPtrToStructure<T>(byte* ptr, out T structure, uint sizeofT) where T : struct
        {
            structure = default(T);  // Dummy assignment to silence the compiler
            PtrToStructureNative(ptr, __makeref(structure), sizeofT);
        }
 
        [MethodImpl(MethodImplOptions.InternalCall)]
        [ResourceExposure(ResourceScope.None)]
        [ReliabilityContract(Consistency.WillNotCorruptState, Cer.Success)]
        private static extern void PtrToStructureNative(byte* ptr, /*out T*/ TypedReference structure, uint sizeofT);
 
        [ReliabilityContract(Consistency.WillNotCorruptState, Cer.Success)]
        internal static void GenericStructureToPtr<T>(ref T structure, byte* ptr, uint sizeofT) where T : struct
        {
            StructureToPtrNative(__makeref(structure), ptr, sizeofT);
        }
 
        [MethodImpl(MethodImplOptions.InternalCall)]
        [ResourceExposure(ResourceScope.None)]
        [ReliabilityContract(Consistency.WillNotCorruptState, Cer.Success)]
        private static extern void StructureToPtrNative(/*ref T*/ TypedReference structure, byte* ptr, uint sizeofT);
    }
}