23 references to Exp
PresentationCore (4)
Core\CSharp\System\Windows\Media\Animation\ElasticEase.cs (2)
82
expo = (Math.
Exp
(springiness * normalizedTime) - 1.0) / (Math.
Exp
(springiness) - 1.0);
Core\CSharp\System\Windows\Media\Animation\ExponentialEase.cs (2)
55
return (Math.
Exp
(factor * normalizedTime) - 1.0) / (Math.
Exp
(factor) - 1.0);
System.Numerics (1)
System\Numerics\Complex.cs (1)
359
Double temp_factor = Math.
Exp
(value.m_real);
System.Web.DataVisualization (9)
Common\Formulas\StatisticalAnalysis.cs (4)
1476
return Math.
Exp
( GammLn( m ) + GammLn( n ) - GammLn( m + n ) );
1562
return 0.398942280401433 * Math.
Exp
( -t * t / 2 );
1583
bt = Math.
Exp
(GammLn(a + b) - GammLn(a) - GammLn(b) + a * Math.Log(x) + b * Math.Log(1.0 - x));
1819
outputValues[1][0] = Math.
Exp
( GammLn( m ) );
Common\Formulas\TimeSeriesAndForecasting.cs (5)
505
outputValues[1][i]= Math.
Exp
( coefficients[0] ) * Math.
Exp
( coefficients[1] * outputValues[0][i] );
514
outputValues[0][i] = Math.
Exp
( inputValues[0][0] ) + i * logInterval;
525
outputValues[0][i] = Math.
Exp
( inputValues[0][0] ) + i * logInterval;
527
outputValues[1][i]= Math.
Exp
( coefficients[0] ) * Math.Pow( outputValues[0][i], coefficients[1] );
System.Windows.Forms.DataVisualization (9)
Common\Formulas\StatisticalAnalysis.cs (4)
1476
return Math.
Exp
( GammLn( m ) + GammLn( n ) - GammLn( m + n ) );
1562
return 0.398942280401433 * Math.
Exp
( -t * t / 2 );
1583
bt = Math.
Exp
(GammLn(a + b) - GammLn(a) - GammLn(b) + a * Math.Log(x) + b * Math.Log(1.0 - x));
1819
outputValues[1][0] = Math.
Exp
( GammLn( m ) );
Common\Formulas\TimeSeriesAndForecasting.cs (5)
505
outputValues[1][i]= Math.
Exp
( coefficients[0] ) * Math.
Exp
( coefficients[1] * outputValues[0][i] );
514
outputValues[0][i] = Math.
Exp
( inputValues[0][0] ) + i * logInterval;
525
outputValues[0][i] = Math.
Exp
( inputValues[0][0] ) + i * logInterval;
527
outputValues[1][i]= Math.
Exp
( coefficients[0] ) * Math.Pow( outputValues[0][i], coefficients[1] );