|
// ==++==
//
// Copyright (c) Microsoft Corporation. All rights reserved.
//
// ==--==
// =+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+
//
// FirstQueryOperator.cs
//
// <OWNER>Microsoft</OWNER>
//
// =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
using System.Collections.Generic;
using System.Diagnostics.Contracts;
using System.Threading;
namespace System.Linq.Parallel
{
/// <summary>
/// First tries to discover the first element in the source, optionally matching a
/// predicate. All partitions search in parallel, publish the lowest index for a
/// candidate match, and reach a barrier. Only the partition that "wins" the ----,
/// i.e. who found the candidate with the smallest index, will yield an element.
/// </summary>
/// <typeparam name="TSource"></typeparam>
internal sealed class FirstQueryOperator<TSource> : UnaryQueryOperator<TSource, TSource>
{
private readonly Func<TSource, bool> m_predicate; // The optional predicate used during the search.
private readonly bool m_prematureMergeNeeded; // Whether to prematurely merge the input of this operator.
//---------------------------------------------------------------------------------------
// Initializes a new first operator.
//
// Arguments:
// child - the child whose data we will reverse
//
internal FirstQueryOperator(IEnumerable<TSource> child, Func<TSource, bool> predicate)
:base(child)
{
Contract.Assert(child != null, "child data source cannot be null");
m_predicate = predicate;
m_prematureMergeNeeded = Child.OrdinalIndexState.IsWorseThan(OrdinalIndexState.Increasing);
}
//---------------------------------------------------------------------------------------
// Just opens the current operator, including opening the child and wrapping it with
// partitions as needed.
//
internal override QueryResults<TSource> Open(QuerySettings settings, bool preferStriping)
{
// We just open the child operator.
QueryResults<TSource> childQueryResults = Child.Open(settings, false);
return new UnaryQueryOperatorResults(childQueryResults, this, settings, preferStriping);
}
internal override void WrapPartitionedStream<TKey>(
PartitionedStream<TSource, TKey> inputStream, IPartitionedStreamRecipient<TSource> recipient, bool preferStriping, QuerySettings settings)
{
// If the index is not at least increasing, we need to reindex.
if (m_prematureMergeNeeded)
{
ListQueryResults<TSource> listResults = ExecuteAndCollectResults(inputStream, inputStream.PartitionCount, Child.OutputOrdered, preferStriping, settings);
WrapHelper<int>(listResults.GetPartitionedStream(), recipient, settings);
}
else
{
WrapHelper<TKey>(inputStream, recipient, settings);
}
}
private void WrapHelper<TKey>(
PartitionedStream<TSource, TKey> inputStream, IPartitionedStreamRecipient<TSource> recipient, QuerySettings settings)
{
int partitionCount = inputStream.PartitionCount;
// Generate the shared data.
FirstQueryOperatorState<TKey> operatorState = new FirstQueryOperatorState<TKey>();
CountdownEvent sharedBarrier = new CountdownEvent(partitionCount);
PartitionedStream<TSource, int> outputStream = new PartitionedStream<TSource, int>(
partitionCount, Util.GetDefaultComparer<int>(), OrdinalIndexState.Shuffled);
for (int i = 0; i < partitionCount; i++)
{
outputStream[i] = new FirstQueryOperatorEnumerator<TKey>(
inputStream[i], m_predicate, operatorState, sharedBarrier,
settings.CancellationState.MergedCancellationToken, inputStream.KeyComparer, i);
}
recipient.Receive(outputStream);
}
//---------------------------------------------------------------------------------------
// Returns an enumerable that represents the query executing sequentially.
//
internal override IEnumerable<TSource> AsSequentialQuery(CancellationToken token)
{
Contract.Assert(false, "This method should never be called as fallback to sequential is handled in ParallelEnumerable.First().");
throw new NotSupportedException();
}
//---------------------------------------------------------------------------------------
// Whether this operator performs a premature merge that would not be performed in
// a similar sequential operation (i.e., in LINQ to Objects).
//
internal override bool LimitsParallelism
{
get { return false; }
}
//---------------------------------------------------------------------------------------
// The enumerator type responsible for executing the first operation.
//
class FirstQueryOperatorEnumerator<TKey> : QueryOperatorEnumerator<TSource, int>
{
private QueryOperatorEnumerator<TSource, TKey> m_source; // The data source to enumerate.
private Func<TSource, bool> m_predicate; // The optional predicate used during the search.
private bool m_alreadySearched; // Set once the enumerator has performed the search.
private int m_partitionId; // ID of this partition
// Data shared among partitions.
private FirstQueryOperatorState<TKey> m_operatorState; // The current first candidate and its partition index.
private CountdownEvent m_sharedBarrier; // Shared barrier, signaled when partitions find their 1st element.
private CancellationToken m_cancellationToken; // Token used to cancel this operator.
private IComparer<TKey> m_keyComparer; // Comparer for the order keys
//---------------------------------------------------------------------------------------
// Instantiates a new enumerator.
//
internal FirstQueryOperatorEnumerator(
QueryOperatorEnumerator<TSource, TKey> source, Func<TSource, bool> predicate,
FirstQueryOperatorState<TKey> operatorState, CountdownEvent sharedBarrier, CancellationToken cancellationToken,
IComparer<TKey> keyComparer, int partitionId)
{
Contract.Assert(source != null);
Contract.Assert(operatorState != null);
Contract.Assert(sharedBarrier != null);
Contract.Assert(keyComparer != null);
m_source = source;
m_predicate = predicate;
m_operatorState = operatorState;
m_sharedBarrier = sharedBarrier;
m_cancellationToken = cancellationToken;
m_keyComparer = keyComparer;
m_partitionId = partitionId;
}
//---------------------------------------------------------------------------------------
// Straightforward IEnumerator<T> methods.
//
internal override bool MoveNext(ref TSource currentElement, ref int currentKey)
{
Contract.Assert(m_source != null);
if (m_alreadySearched)
{
return false;
}
// Look for the lowest element.
TSource candidate = default(TSource);
TKey candidateKey = default(TKey);
try
{
TSource value = default(TSource);
TKey key = default(TKey);
int i = 0;
while (m_source.MoveNext(ref value, ref key))
{
if ((i++ & CancellationState.POLL_INTERVAL) == 0)
CancellationState.ThrowIfCanceled(m_cancellationToken);
// If the predicate is null or the current element satisfies it, we have found the
// current partition's "candidate" for the first element. Note it.
if (m_predicate == null || m_predicate(value))
{
candidate = value;
candidateKey = key;
lock (m_operatorState)
{
if (m_operatorState.m_partitionId == -1 || m_keyComparer.Compare(candidateKey, m_operatorState.m_key) < 0)
{
m_operatorState.m_key = candidateKey;
m_operatorState.m_partitionId = m_partitionId;
}
}
break;
}
}
}
finally
{
// No matter whether we exit due to an exception or normal completion, we must ensure
// that we signal other partitions that we have completed. Otherwise, we can cause deadlocks.
m_sharedBarrier.Signal();
}
m_alreadySearched = true;
// Wait only if we may have the result
if (m_partitionId == m_operatorState.m_partitionId)
{
m_sharedBarrier.Wait(m_cancellationToken);
// Now re-read the shared index. If it's the same as ours, we won and return true.
if (m_partitionId == m_operatorState.m_partitionId)
{
currentElement = candidate;
currentKey = 0; // 1st (and only) element, so we hardcode the output index to 0.
return true;
}
}
// If we got here, we didn't win. Return false.
return false;
}
protected override void Dispose(bool disposing)
{
m_source.Dispose();
}
}
class FirstQueryOperatorState<TKey>
{
internal TKey m_key;
internal int m_partitionId = -1;
}
}
}
|