|
//---------------------------------------------------------------------------
//
// <copyright file="UncommonValueTable.cs" company="Microsoft">
// Copyright (C) Microsoft Corporation. All rights reserved.
// </copyright>
//
// Description: A table for storing up to 32 uncommon values.
//
//---------------------------------------------------------------------------
using System;
using System.Windows;
namespace MS.Internal
{
// An economical table for "uncommon values", identified by integers in the range [0,32).
// Unused values incur no memory allocation
internal struct UncommonValueTable
{
public bool HasValue(int id)
{
return (_bitmask & (0x1u << id)) != 0;
}
public object GetValue(int id)
{
return GetValue(id, DependencyProperty.UnsetValue);
}
public object GetValue(int id, object defaultValue)
{
int index = IndexOf(id);
return (index < 0) ? defaultValue : _table[index];
}
public void SetValue(int id, object value)
{
int index = Find(id);
if (index < 0)
{
// new entry - grow the array
if (_table == null)
{
_table = new object[1];
index = 0;
}
else
{
int n = _table.Length;
object[] newTable = new object[n + 1];
index = ~index;
Array.Copy(_table, 0, newTable, 0, index);
Array.Copy(_table, index, newTable, index+1, n-index);
_table = newTable;
}
// mark the id as present
_bitmask |= (0x1u << id);
}
// store the new value
_table[index] = value;
}
public void ClearValue(int id)
{
int index = Find(id);
if (index >= 0)
{
// remove the value
int n = _table.Length - 1;
if (n == 0)
{
_table = null;
}
else
{
object[] newTable = new object[n];
Array.Copy(_table, 0, newTable, 0, index);
Array.Copy(_table, index+1, newTable, index, n-index);
_table = newTable;
}
// mark the id as absent
_bitmask &= ~(0x1u << id);
}
}
// return the index within the table, -1 if not present
private int IndexOf(int id)
{
return HasValue(id) ? GetIndex(id) : -1;
}
// return the index within the table, 1's complement if not present
private int Find(int id)
{
int index = GetIndex(id);
if (!HasValue(id))
{
index = ~index;
}
return index;
}
// get the index for the given id: the number of 1-bits in _bitmask
// to the right of the bit for the id.
private int GetIndex(int id)
{
unchecked // the multiplication in step 5 will overflow - we don't need the overflowing bits
{
// we count the bits in parallel, using 32-bit operations. This
// is an old technique - Knuth says it was known in the 1950's.
// See The Art of Computer Programming 7.1.3-(62).
// 1. Discard the bits at or above the given id
uint x = (_bitmask << (31 - id)) << 1; // (x<<32) is undefined
// 2. Replace each 2-bit chunk with the count of 1's in that chunk
x = x - ((x>>1) & 0x55555555u);
// 3. Accumulate the counts within each 4-bit chunk
x = (x & 0x33333333u) + ((x>>2) & 0x33333333u);
// 4. Accumulate the counts within each 8-bit chunk (i.e. byte)
x = (x + (x>>4)) & 0x0F0F0F0Fu;
// 5. Sum the byte counts into the msb, and move the answer back to the lsb
return (int) ((x * 0x01010101u) >> 24);
// this method is often better than table-lookup methods, as it avoids
// cache-misses on the table. Everything happens in registers.
}
}
private object[] _table;
private uint _bitmask;
}
}
|